Ionic strength-dependent isoforms of sea urchin egg dynein.
نویسندگان
چکیده
Unfertilized sea urchin eggs provide a reservoir of molecules which later are involved in microtubule-mediated movements during embryonic development. Among these molecules is egg dynein, which has been isolated in two forms, 20 S and 12 S. Evidence obtained previously from our laboratory indicates that 20 S dynein is a latent activity precursor of ciliary dynein. In contrast, others have suggested that 12 S egg dynein functions in the mitotic apparatus. It is therefore important to determine the relationship between these egg dyneins. Here we demonstrate that the sedimentation velocity of the egg dynein is dependent on the ionic strength of the extraction conditions. The 20 S dynein is obtained with low ionic strength extraction, and the 12 S form is obtained in high salt (0.6 M KCl). The 20 S dynein, after collection from a sucrose gradient, can be converted quantitatively to the 12 S form by exposure to salt, and this conversion can be followed over time. Further, the 20 S dynein can be converted entirely to 12 S dynein and then partially reconstituted to a faster sedimenting species. During these conversions, the dynein high Mr heavy chains are always coincident with the MgATPase activity, and antibodies show that the dynein heavy chains of the 20 S, 12 S, and converted species are indistinguishable immunologically. These data suggest that 12 S dynein is an ionic strength-dependent isoform of 20 S dynein that results from a partial dissociation of the 20 S polypeptide complex, similar to the relationship between 12 and 21 S sperm flagellar dynein. If the 20 and 12 S enzymes are isoforms of the same dynein, then there is compelling evidence for only a single dynein in the unfertilized egg, and that dynein is probably a ciliary precursor.
منابع مشابه
Dynein isoforms in sea urchin eggs.
Biochemical and immunological analysis of unfertilized sea urchin eggs has revealed the presence of at least two distinct isoforms of cytoplasmic dyneins, one soluble and the other microtubule-associated. The soluble enzyme is a 20 S particle with a MgATPase activity that can be activated 5-fold by nonionic detergents. It contains heavy chain polypeptides that 1) comigrate with the dynein heavy...
متن کاملIsolated beta-heavy chain subunit of dynein translocates microtubules in vitro
Our goal was to assess the microtubule translocating ability of individual ATPase subunits of outer arm dynein. Solubilized outer arm dynein from sea urchin sperm (Stronglocentrotus purpuratus) was dissociated into subunits by low ionic strength buffer and fractionated by zonal centrifugation. Fractions were assessed by an in vitro functional assay wherein microtubules move across a glass surfa...
متن کاملDynein-like Mg2+-ATPase in mitotic spindles isolated from sea urchin embryos (Strongylocentrotus droebachiensis)
Two distinctly different ATPases have been reported to be endogenous to the mitotic apparatus: a Mg2+-ATPase resembling axonemal dynein, and a Ca2+-ATPase postulated to be bound in membranes. To examine the nature of the Mg2+-ATPase, we isolated membrane-free mitotic spindles from Stronglylocentrotus droebachiensis embryos by rapidly lysing these in a calcium-chelating, low-ionic-strength buffe...
متن کاملTHE MECHANISM OF ACTION OF COLCHICINE Colchicine Binding to Sea Urchin Eggs and the Mitotic Apparatus
Colchicine forms a complex in vivo with a protein present in fertilized or unfertilized sea urchin eggs; similar binding was obtained in vitro with the soluble fraction from egg homogenates. Kinetic parameters and binding equilibrium constant were essentially the same in vivo and in vitro. The binding site protein was shown to have a sedimentation constant of 6S by zone centrifugation. The prot...
متن کاملRegulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements
In unfertilized eggs of the sea urchin, Strongylocentrotus purpuratus, glucose-6-phosphate dehydrogenase (G6PDH) associates with the particulate elements remaining either after homogenization or extraction of eggs with non-ionic detergent in low ionic-strength media. At physiological ionic strength, the extent of G6PDH binding to these particulate elements is proportional to the total protein c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 263 6 شماره
صفحات -
تاریخ انتشار 1988